Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(2): 1399-1407, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38164769

RESUMO

The facile and cost-effective preparation of supercapacitor electrodes is significant for the application of this kind of electrochemical energy-storing module. In this work, we designed a feasible strategy to fabricate a binary active material onto a current collector in one step. A colloidal mixture of graphene oxide and pyrrole layered on a carbon cloth could undergo a redox reaction through a mild hydrothermal process to yield a reduced graphene oxide/polypyrrole hydrogel film anchored onto the carbon cloth. The integrated electrode with the porous graphene/polypyrrole active material could be directly utilized as a freestanding working electrode for electrochemical measurements and the assembly of supercapacitor devices. The as-prepared electrode could achieve a high capacitance of 1221 mF cm-2 at 1 mA cm-2 (531 F g-1) with satisfactory cycling stability. The constructed symmetric supercapacitor with two optimal electrodes could provide an energy density of 70.4 µWh cm-2 (15.3 Wh kg-1). This work offers a feasible pathway toward the integration of graphene/conducting polymer composites as electrochemical electrodes.

2.
Sci Rep ; 13(1): 20719, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007558

RESUMO

The dicing saw is a critical piece of equipment in IC processing, primarily used to cut wafers. Due to the high spindle speed, even small errors in the cutting process can result in wafer chipping or cracking. Therefore, the dicing saw requires a high degree of accuracy and stability. In this paper, the accuracy of the X-axis servo response was simulated using an Israeli ADT-8230 dual-axis abrasive wheel dicing saw. The study introduces a novel approach by using a fuzzy controller instead of the traditional position loop proportional integral (PI) controller. In addition, a two-input, two-output fuzzy rule is used for on-line correction of the position loop PI parameters. A heuristic algorithm is used to optimise the position loop fuzzy controller parameters. The quantization and proportionality factors are rectified using Particle Swarm Optimisation (PSO) algorithm and Genetic Algorithm (GA) respectively. By comparing the performance of the PSO fuzzy and GA fuzzy controllers, the optimal control method is derived. The proposed method is validated by simulation in the MATLAB/Simulink development environment using real ADT-8230 servo data. Experimental results show that the PSO-fuzzy structured controller reduces the position control error by 11.8%, improves the tracking performance by 26% and reduces the torque pulsation by 23%. Therefore, in future research, more advanced search algorithms should be further combined to improve the servo accuracy of the dicing saw.

3.
Int J Biol Macromol ; 253(Pt 1): 126505, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37648124

RESUMO

Poly (ß-L-malic acid) (PMLA) is a biopolymer used in food and medical fields. However, the industrial processes are susceptible to the pollution of CaSO4 waste and organic solvent owing to the heavy use of CaCO3 in fermentation process and organic solvents in isolation process. This study developed an organic solvent and CaSO4 -free process for the industrial-scale production of PMLA. Firstly, calcium ion was removed at pH 9.2 by pH adjustment with Na2CO3, and the generated CaCO3 was reused in the fermentation process. Then, the D296 resin was selected to isolate the PMLA from the Ca2+-free broth, where the adsorption data were both primely described by the Freundlich and Langmuir equation, while Freundlich model better fit the process than Langmuir equation, indicating that it was non-monolayer adsorption of PMLA on the resin. Meanwhile, a three-step gradient elution with phosphate buffer (i.e., 0.2 mol/L, pH 7.0) containing 0.1, 0.2 and 1 mol/L NaCl was developed to recover PMLA. Finally, a PES15 membrane was selected to recover the PMLA from the elution solution, which could be reused in the next cycle. As a result, the PMLA with a purity of 98.89 % was obtained with the developed green process. In the developed process, it removed the pollution of organic solvent and calcium waste for the biosynthesis of PMLA on an industrial scale, which also offers a sustainable and green route for the biosynthesis of other carboxylic acids.


Assuntos
Aureobasidium , Polímeros , Aureobasidium/metabolismo , Polímeros/metabolismo , Cálcio , Troca Iônica , Fermentação , Malatos , Solventes
4.
Int J Biol Macromol ; 242(Pt 2): 124720, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37182630

RESUMO

Poly (ß-L-malic acid) (PMLA) is attracting industrial interest for its potential application in medicine and other industries, whose functions primarily depend upon its molecular size and chemical structure. Up to now, the fractionation and characterization of PMLA produced by Aureobasidium spp. were still unclear. In this study, the product from A. melanogenum ipe-1 was effectively fractionated using 300 and 50 kDa membranes. During the filtration, the mechanisms of membrane fouling were illegible since the PMLA can both reject and permeate the membrane, while the main fouling mechanism varied between standard blocking and complete blocking during the diafiltration. After fractionation, 14.0, 8.4 and 77.6 % of the PMLAs with Mws of 75,134, 21,344 and 10,056 Da were distributed in the 300 kDa retentate after diafiltrating, 50 kDa retentate after diafiltrating, and the 50 kDa permeate, respectively. The Mw/Mns of the PMLAs were 4.12, 1.92, and 1.12 in the three fractions. Based on characteristic spectra of NMR, HPLC and FTIR, the product was not usual L-malic acid monomers, but glucose-terminated PMLA. The glucose was located at the terminal hydroxyl of PMLA. These results would serve as a valuable guide for process design and practical operation in subsequent industrial application.


Assuntos
Aureobasidium , Polímeros , Aureobasidium/metabolismo , Polímeros/química , Fermentação , Malatos/química , Poli A
5.
J Proteome Res ; 22(2): 420-431, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36696582

RESUMO

Neuropeptides are a class of endogenous peptides that have key regulatory roles in biochemical, physiological, and behavioral processes. Mass spectrometry analyses of neuropeptides often rely on protein informatics tools for database searching and peptide identification. As neuropeptide databases are typically experimentally built and comprised of short sequences with high sequence similarity to each other, we developed a novel database searching tool, HyPep, which utilizes sequence homology searching for peptide identification. HyPep aligns de novo sequenced peptides, generated through PEAKS software, with neuropeptide database sequences and identifies neuropeptides based on the alignment score. HyPep performance was optimized using LC-MS/MS measurements of peptide extracts from various Callinectes sapidus neuronal tissue types and compared with a commercial database searching software, PEAKS DB. HyPep identified more neuropeptides from each tissue type than PEAKS DB at 1% false discovery rate, and the false match rate from both programs was 2%. In addition to identification, this report describes how HyPep can aid in the discovery of novel neuropeptides.


Assuntos
Neuropeptídeos , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Cromatografia Líquida , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos/análise , Software , Homologia de Sequência , Bases de Dados de Proteínas
6.
Appl Biochem Biotechnol ; 195(2): 844-860, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36214953

RESUMO

Carbon fixation and conversion based on Clostridium ljungdahlii have great potential for the sustainable production of biochemicals (i.e., 2,3-butanediol, acetic acid, and ethanol). Here, the effects of reducing agents on the production of biochemicals from H2/CO2 using C. ljungdahlii were studied. It was found that the element S and reducing power could significantly affect the production of biochemicals, and cysteine (Cys) was better than sodium sulfide for the production of biochemicals, especially for the production of 2,3-butanediol. Moreover, comparing to the control (i.e., without the addition of Cys), the gene expression profiles indicated that the fdh and adhE1 were significantly upregulated with the addition of Cys, which involved in pathways of the CO2 fixation and ethanol production. Therefore, the irreplaceability of Cys on the production of biochemicals was both caused by its utilization as a reducing agent and its effect on the metabolic pathway. Finally, compared to the control, the production of 2,3-butanediol was increased by 2.17 times under the addition of 1.7 g/L Cys.


Assuntos
Dióxido de Carbono , Cisteína , Dióxido de Carbono/metabolismo , Cisteína/metabolismo , Clostridium/genética , Clostridium/metabolismo , Ácido Acético/metabolismo , Etanol/metabolismo
7.
Int J Biol Macromol ; 223(Pt A): 722-731, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36370855

RESUMO

Poly (ß-L-malic acid) (PMLA) is attracting industrial interest for its potential application in medicine and other industries. In this study, electrolytic stimulation assisted PMLA production was developed. Firstly, it was found that the pentavalent nitrogen source (i.e., NO3-) was more suitable for PMLA production. Secondly, a usual single-chamber bioelectric-fermentation system (BES) cannot improve PMLA production, which can only promote cell growth. Then, a new single-chamber BES with an external circulation was developed, where the PMLA metabolism was further intensified. Finally, the integration of NO3- addition and electrolytic stimulation mode (c) showed a positive synergy on the PMLA production. Compared to the case without NO3- addition and electrolytic stimulation, the PMLA production was increased by 22.9 % using the integrated process. Moreover, compared to the case without the electrolytic stimulation mode (c), it was revealed that the different genes involved in 12 metabolic subsystems using the integrated process, where 31 and 177 genes were up-regulated and down-regulated, respectively. The up-regulated genes were mainly participated in melanin metabolic process, catalase activity, and oxidoreductase activity. Hence, the integration of electrolytic stimulation represents a novel approach to improve PMLA production.


Assuntos
Malatos , Polímeros , Polímeros/metabolismo , Malatos/farmacologia , Malatos/metabolismo , Fermentação , Eletrólitos
8.
J Environ Manage ; 323: 116197, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36126591

RESUMO

Baker's yeast industries generate highly polluted effluents, especially the cell free broth (i.e., vinasse) characterized by high chemical oxygen demand, nitrogen, and salts. In this work, it was found that the residual by-products (i.e., ethanol and acetic acid) and salts in the vinasse severely inhibited the cell growth, which hindered the reuse of the vinasse for the production of Saccharomyces cerevisiae. Through optimizing a suitable control strategy, the productions of ethanol and acetic acid were eliminated. Then, a nanofiltration membrane (i.e., NF5) was preferred for preliminarily and simultaneously separating and concentrating valuable molecules (i.e., invertase, food grade proteins and pigments) in the vinasse, and the main fouling mechanism was cake layer formation. Subsequently, a reverse osmosis membrane (RO) was suitable to separate and concentrate salts in the NF5 permeate, where the membrane fouling was negligible. Finally, the RO permeate was successfully reused for the production of S. cerevisiae. In addition, without calculating the benefit from the recovery of the valuable molecules, the cost of the integrated process can be decreased by 59.8% compared with the sole triple effect evaporation. Meanwhile, the volume of the fresh water used in the fermentation process can be decreased by 68.8%. Thus, it is a sustainable process for the cleaner production of baker's yeast using the integrated fermentation and membrane separation process.


Assuntos
Saccharomyces cerevisiae , Gerenciamento de Resíduos , Ácido Acético/metabolismo , Etanol/metabolismo , Fermentação , Nitrogênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Sais/metabolismo , beta-Frutofuranosidase/metabolismo
9.
Molecules ; 27(3)2022 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-35164219

RESUMO

Firstly, 2,3-butanediol (2,3-BDO) is a chemical platform used in several applications. However, the pathogenic nature of its producers and the expensive feedstocks used limit its scale production. In this study, cane molasses was used for 2,3-BDO production by a nonpathogenic Clostridium ljungdahlii. It was found that cane molasses alone, without the addition of other ingredients, was favorable for use as the culture medium for 2,3-BDO production. Compared with the control (i.e., the modified DSMZ 879 medium), the differential genes are mainly involved in the pathways of carbohydrate metabolism, membrane transport, and amino acid metabolism in the case of the cane molasses alone. However, when cane molasses alone was used, cell growth was significantly inhibited by KCl in cane molasses. Similarly, a high concentration of sugars (i.e., above 35 g/L) can inhibit cell growth and 2,3-BDO production. More seriously, 2,3-BDO production was inhibited by itself. As a result, cane molasses alone with an initial 35 g/L total sugars was suitable for 2,3-BDO production in batch culture. Finally, an integrated fermentation and membrane separation process was developed to maintain high 2,3-BDO productivity of 0.46 g·L-1·h-1. Meanwhile, the varied fouling mechanism indicated that the fermentation properties changed significantly, especially for the cell properties. Therefore, the integrated fermentation and membrane separation process was favorable for 2,3-BDO production by C. ljungdahlii using cane molasses.


Assuntos
Reatores Biológicos , Butileno Glicóis/metabolismo , Clostridium/metabolismo , Fermentação , Membranas/metabolismo , Melaço/análise , Técnicas de Cultura Celular por Lotes , Butileno Glicóis/química , Clostridium/crescimento & desenvolvimento , Membranas/química
10.
Am J Chin Med ; 49(7): 1645-1666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34488551

RESUMO

Berberine is an alkaloid from several medicinal plants originally used to treat diarrhea and dysentery as a traditional Chinese herbal medicine. In recent years, berberine has been discovered to exhibit a wide spectrum of biological activities in the treatment of diverse diseases ranging from cancer and neurological dysfunctions to metabolic disorders and heart diseases. This review article summarizes the clinical practice and laboratory exploration of berberine for the treatment of cardiometabolic and heart diseases, with a focus on the novel insights and recent advances of the underlying mechanisms recognized in the past decade. Berberine was found to display pleiotropic therapeutic effects against dyslipidemia, hyperglycemia, hypertension, arrhythmia, and heart failure. The mechanisms of berberine for the treatment of cardiometabolic disease involve combating inflammation and oxidative stress such as inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) activation, regulating electrical signals and ionic channels such as targeting human ether-a-go-go related gene (hERG) currents, promoting energy metabolism such as activating adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, modifying gut microbiota to promote transforming of berberine into its intestine-absorbable form, and interacting with non-coding RNAs via targeting multiple signaling pathways such as AMPK, mechanistic target of rapamycin (mTOR), etc. Collectively, berberine appears to be safe and well-tolerated in clinical practice, especially for those who are intolerant to statins. Knowledge from this field may pave the way for future development of more effective pharmaceutical approaches for managing cardiometabolic risk factors and preventing heart diseases.


Assuntos
Berberina/farmacologia , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Medicina Tradicional Chinesa/métodos , Berberina/química , Humanos , Estrutura Molecular
11.
Molecules ; 26(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202788

RESUMO

Fructo-oligosaccharides (FOS) are prebiotics with numerous health benefits. So far, the dissolved oxygen (DO) concentration control strategy for fermentative production of FOS is still unknown. In order to improve FOS production, the effects of DO concentration and fermentation mode on FOS using Aureobasidium pullulans were investigated in this study. The greatest FOS production (123.2 ± 6.2 g/L), with a yield of 61.6% ± 3.0% (g FOS/g sucrose), was obtained in batch culture under high DO concentration. Furthermore, repeated-batch culture revealed that enzyme production and FOS production were not closely associated with cell growth. By keeping the DO concentration above 5% in the repeated-batch culture, a maximum FOS concentration of 548.3 ± 37.4 g/L and yield of 68.6% ± 2.6% (g FOS/g sucrose) were obtained, which were 3.45% and 11.4% times higher than those obtained in the batch culture without DO control, respectively. Additionally, the ratios of 1-fructofuranosyl nystose (GF4) and 1,1,1,1-kestohexose (GF5) were 33.8% and 23.2%, respectively, in the product of repeated-batch culture, but these compounds were not detected in batch culture. Thus, it can be concluded that the DO concentration affects not only the yield of FOS but also the composition of FOS with different degrees of polymerization, which is the key factor in the fermentative production of FOS with a high polymerization degree.


Assuntos
Aureobasidium/crescimento & desenvolvimento , Oligossacarídeos/biossíntese , Oxigênio/metabolismo , Sacarose/metabolismo
12.
Appl Microbiol Biotechnol ; 104(20): 8691-8703, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32902681

RESUMO

ß-poly(L-malic acid) (PMLA) has attracted industrial interest for its potential applications in medicine and other industries. For a sustainable PMLA production, it requires replacing/reducing the CaCO3 usage, since the residual CaCO3 impeded the cells' utilization, and a large amount of commercially useless gypsum was accumulated. In this study, it was found that more glucose was converted into CO2 using soluble alkalis compared with CaCO3 usage. Moreover, since the high ion strength and respiration effect of soluble alkalis also inhibited PMLA production, they could not effectively replace CaCO3. Furthermore, comparing the fermentations with different neutralizers (soluble alkali vs. CaCO3), it was found that the differential genes are mainly involved in the pathway of starch and sucrose metabolism, pentose and glucuronate interconversions, histidine metabolism, ascorbate and aldarate metabolism, and phagosome. In detail, in the case with CaCO3, 562 genes were downregulated and 262 genes were upregulated, and especially, those genes involved in energy production and conversion were downregulated by 26.7%. Therefore, the irreplaceability of CaCO3 was caused by its effect on the PMLA metabolic pathway rather than its usage as neutralizer. Finally, a combined pH shift control strategy with CaCO3 addition was developed. After the fermentation, 64.8 g/L PMLA and 38.9 g/L biomass were obtained with undetectable CaCO3 and less CO2 emission. KEY POINTS: • The effect of CaCO3 on PMLA metabolic pathway resulted in its irreplaceability. • A pH shift control strategy with CaCO3 addition was developed. • Undetectable CaCO3 and less CO2 emission were detected with the new strategy. Graphical abstract.


Assuntos
Aureobasidium , Polímeros , Fermentação , Glucanos , Concentração de Íons de Hidrogênio , Malatos , Polímeros/metabolismo
13.
J Am Soc Mass Spectrom ; 31(7): 1358-1371, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32266812

RESUMO

Identification of peptides in species lacking fully sequenced genomes is challenging due to the lack of prior knowledge. De novo sequencing is the method of choice, but its performance is less than satisfactory due to algorithmic bias and interference in complex MS/MS spectra. The task becomes even more challenging for endogenous peptides that do not involve an enzymatic digestion step, such as neuropeptides. However, many neuropeptides possess common sequence motifs that are conserved across members of the same family. Taking advantage of this feature to improve de novo sequencing of neuropeptides, we have developed a method named PRESnovo (prescreening precursors prior to de novo sequencing) to predict the motif from a MS/MS spectrum. A neuropeptide sequence is broken into a motif with conserved amino acid residues and the remaining partial sequence. By searching against a predefined motif database constructed from known homologous sequences, PRESnovo assigns the most probable motif to each precursor via a sophisticated scoring function. Performance analysis was conducted with 15 neuropeptide standards, and 11 neuropeptides were correctly identified with PRESnovo compared to 1 identification by PEAKS only. We applied PRESnovo to assign motifs to peptide sequences in conjunction with PEAKS for assigning the rest of the peptide sequence in order to discover neuropeptides in tissue samples of green crab, C. maenas, and Jonah crab, C. borealis. Collectively, a large number of neuropeptides were identified, including 13 putative neuropeptides identified in green crab brain, 77 in Jonah crab brain, and 47 in Jonah crab sinus glands for the first time. This PRESnovo strategy greatly simplifies de novo sequencing and enhances the accuracy and sensitivity of neuropeptide identification when common motifs are present.


Assuntos
Neuropeptídeos , Análise de Sequência de Proteína/métodos , Espectrometria de Massas em Tandem/métodos , Motivos de Aminoácidos , Animais , Braquiúros , Bases de Dados de Proteínas , Neuropeptídeos/análise , Neuropeptídeos/química , Neuropeptídeos/classificação , Software
14.
Bioresour Technol ; 295: 122260, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31654946

RESUMO

Membrane-assisted ß-poly(L-malic acid) (PMLA) production from bagasse hydrolysates was developed. For the first time, it was found that mixing the acid and enzyme hydrolysates was unfavorable for PMLA production because too high hexose: pentose ratio and glucose concentration in the mixed sugar could inhibit the assimilation of pentose. 120 g/L sugar concentrations in the acid hydrolysate was suitable for PMLA production with 23.2 g/L PMLA and 34.7 g/L biomass. Moreover, an integrated membrane process consisting of ultrafiltration, nanofiltration and reverse osmosis membranes could concentrate sugars and adjust acetic acid concentration prior to fermentation of lignocellulosic sugars. Meanwhile, it was found that 1.46 g/L acetic acid was preferred for PMLA production from enzyme hydrolysate or sole glucose which respectively increased PMLA production and cell growth by 25.4% and 5.9% from sole glucose, while it showed no significant enhancement in PMLA production with a higher cell growth and productivity from acid hydrolysate.


Assuntos
Glucanos , Malatos , Celulose , Fermentação
15.
Bioresour Technol ; 288: 121497, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31176942

RESUMO

ß-poly(l-malic acid) (PMLA) production by Aureobasidium pullulans ipe-1 using Jerusalem artichoke tuber (JA) hydrolysate as a low cost carbon source was developed. The PMLA production was favored by JA pretreated with 0.06 M nitric acid without adding exogenous nitrogen sources into fermentation medium. With an initial 130 g/L total sugar of the JA hydrolysate, the highest PMLA productivity 0.52 g/L·h was achieved, which was increased by 2.0 folds compared to that with sole glucose case. To further enhance PMLA productivity, the cells were immobilized in luffa sponge matrices, and repeated batch culture was carried out for 4 cycles. The resulting PMLA productivity was further enhanced by 50% compared with the batch culture. The cost of PMLA production in the JA case was only 5.4% of that in the glucose case. The outcomes of this work provided a strategy of PMLA production on a commercial scale.


Assuntos
Helianthus , Luffa , Fermentação , Glucanos , Malatos , Polímeros
16.
Bioresour Technol ; 272: 398-406, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30388577

RESUMO

The aim of this study was to establish a simplified operational process for lactic acid (LA) production by Bacillus coagulans IPE22 from inedible starchy biomass with open fermentation method. First, 29.47 mU/mg specific amylase activity was detected in direct batch fermentation from soluble starch, but the activity of the produced amylase was too low for effective production of LA. Then seven batches from 72 g/L soluble starch were conducted without sterilization. It was found that one step simultaneous liquefaction, saccharification and fermentation (SLSF) with the addition of mesothermal α-amylase and glucoamylase was the optimal mode with LA concentration, yield and productivity of 68.72 g/L, 0.99 g/g and 1.72 g/L h respectively. Finally, inedible starchy biomass, cassava and sorghum flours, were proved to be alternatives to refined soluble starch. For the first time, one step open SLSF of inedible starchy biomass was reported for LA production by B. coagulans.


Assuntos
Bacillus coagulans/metabolismo , Biomassa , Fermentação , Ácido Láctico/biossíntese , Glucana 1,4-alfa-Glucosidase/metabolismo , Amido/metabolismo
17.
Bioresour Technol ; 268: 45-51, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30071412

RESUMO

Succinic acid (SA) production by Actinobacillus succinogenes 130Z using cane molasses as a low cost carbon source was developed. With molasses pretreated by 150 kDa membrane, the highest SA concentration (45.6 g/L), productivity (1.27 g/L·h) and yield (0.76 g SA/g sugars) were obtained under an optimal pH 6.4, which were increased by 1.04 folds compared to those with model sugar mixture due to the effect of vitamins in molasses. Meanwhile, the ratio of sugars in the cane molasses had little effect on SA production. To further enhance SA productivity, the cells were immobilized in luffa sponge matrices (LSM), and repeated batch cultures were carried out for 5 cycles, demonstrating a stable and reliable long-term performance. Compared with the batch culture, the SA productivity enhanced by 49.6% in the LSM system with repeated batch culture. These results suggest that the cell immobilization approach is promising for industrial applications.


Assuntos
Actinobacillus , Reatores Biológicos , Melaço , Ácido Succínico , Bengala , Fermentação , Luffa
18.
Bioresour Technol ; 266: 26-33, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29940439

RESUMO

The aim of the present study is to develop an effective bioprocess for converting CO2 into succinic acid (SA) with Actinobacillus succinogenes by an integrated fermentation and membrane separation process. CO2 could be effectively converted into SA using NaOH as the neutralizer under the completely closed exhaust pipe case with self-circulation of CO2 in the bioreactor. Meanwhile, the optimal CO2 partial pressure was 0.4 bar. In addition, a 300 kDa ultrafiltration (UF) membrane was preferred for constructing the membrane bioreactor. Moreover, a high conductivity was toxic to the cells during SA biosynthesis. After removing the high concentration salts by in-situ membrane filtration, the SA productivity and CO2 fixation rate increased by 39.2% compared with the batch culture, reaching 1.39 g·L-1·h-1 and 0.52 g·L-1·h-1 respectively. Furthermore, nanofiltration (NF) was suitable for purifying the SA and recovering the residual substrates in the UF permeate for the next fermentation.


Assuntos
Actinobacillus/metabolismo , Dióxido de Carbono/química , Ácido Succínico/química , Reatores Biológicos , Fermentação
19.
Bioprocess Biosyst Eng ; 41(9): 1271-1281, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29767339

RESUMO

α,ω-Dicarboxylic acids (DC) are versatile chemical intermediates with different chain length. For biosynthesis of DC, to obtain the highly pure product via crystallization, it is required to remove pigments and proteins in fermentation broth. However, a trade-off between decolorization/deproteinization ratio and DC recovery during the purification process was found, which impeded DC production by fermentation. When ultrafiltration (UF) was applied to treat α,ω-dodecanedioic acid (DC12) broth, 93.4% of DC12 recovery, 80.5% of decolorization ratio and 61.7% of deproteinization ratio were achieved by a PES 3 membrane. However, the membrane technology could not effectively retain the pigments or proteins with low molecular weight when a high DC12 permeation was required. Meanwhile, the selected activated charcoal or macroporous resins were not good adsorbents for the present system. Furthermore, an integrated process for decolorization and deproteinization was developed. After filtration with PES3 membrane, an activated charcoal was used to remove the small proteins and pigments in the UF permeate. As a result, 91.4% of DC12 recovery, 94.7% of decolorization ratio and 84.8% of deproteinization ratio were obtained by such two-stage strategy. These results would serve as a valuable guide for process design and practical operation in subsequent industrial application.


Assuntos
Candida/crescimento & desenvolvimento , Ácidos Dicarboxílicos/metabolismo , Adsorção , Fermentação , Ultrafiltração/métodos
20.
Bioresour Technol ; 260: 9-15, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29604565

RESUMO

The aim of the present study is to develop an effective production process for α, ω-dodecanedioic acid (DC12) biosynthesis using n-dodecane and hydrolysate of Candida cells as substrates by membrane integrated repeated batch fermentation. Cells and n-dodecane were simultaneously recycled during the filtration of fermentation broth (FB) with a 150 kDa ceramic membrane under a cross-flow velocity of 4 m/s and a trans-membrane pressure of 0.2 MPa, and it was also revealed that the cells in the broth could alleviate the membrane fouling during the FB filtration. Moreover, the hydrolysate of the collected cells could be successfully used as a nitrogen source to replace 50% yeast extract for decreasing the DC12 production cost. With repeated-batch culture in a membrane bioreactor, the maximal DC12 productivity could be enhanced by 57.8% compared with the batch culture, meanwhile n-dodecane and cells could be recovered and used for the next fermentation cycle.


Assuntos
Alcanos , Reatores Biológicos , Ácidos Dicarboxílicos , Candida , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...